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Abstract

Pre-trained LLMs have shown strong performance across various NLP tasks includ-
ing Question Answering (QA). Despite their strong generalizability and exceptional
adaptability, LLMs suffer from long-range dependencies and artifacts when fine-
tuned for specific tasks, leading to suboptimal performance. Recent developments
in Vision Transformers have advocated for the use of some auxiliary register to-
kens during the fine-tuning procedure to allow the model to focus on task-relevant
details by better management of global information, leading to provably better
interpretability and performance. We propose and study a novel application of
register-augmented fine-tuning for LLMs in the language domain, and show that
register-augmented language models can better mitigate the effects of artifacts,
leading to higher interpretability, less noise, and overall better performance.

1 Introduction

Pre-trained large language models (LLMs), such as BERT and LLaMA, exhibit strong performance
across various NLP tasks, but fine-tuning for specific tasks like question answering (QA) often
exposes inefficiencies in managing long-range dependencies and artifacts in attention mechanisms.
These artifacts, typically high-norm tokens, lead to suboptimal performance by drawing excessive
attention to less important parts of the input.

Recent studies have investigated the use of register tokens in transformer models. Specifically, in
Vision Transformers, augmenting the input sequence with empty register tokens has shown to address
artifacts and high-norm tokens, by offloading information from high-norm tokens and allowing the
model to focus on task-relevant details, and to much better capture global context.

Our project introduces register tokens to language models to manage global information more
effectively. By outsourcing essential computations to these tokens, register-augmented LLMs mitigate
the impact of artifacts and high-norm tokens in their attention mechanisms, resulting in more
focused and interpretable attention maps, enhancing performance, learning efficiency, as well as
interpretability.

2 Related Work

To better understand the functionality and the performance of a Large Language Model it is imperative
that we first understand the key part of the model that is the attention map. Recent research has
made notable strides in interpreting the attention mechanisms within Vision Transformers (ViTs).
For example, Dosovitskiy et al. [2021] Darcet et al. [2024] have provided insights into visualizing
and interpreting self-attention in vision models. Expanding on this, Chefer et al. [2021] introduced a



novel approach for calculating relevancy in transformer networks using a deep Taylor decomposition
framework Chefer et al. [2021]. This method computes local relevancy scores and propagates
them through the attention layers, while maintaining the total relevancy across layers. Chefer’s
approach has been tested on both vision and language tasks, demonstrating its ability to identify
salient patches in images that influence classification decisions. In the case of language models, the
method successfully extracts input components that support correct classification, as demonstrated
using a fine-tuned BERT model on the Movie Reviews dataset.

In addition to the relevancy-based methods, there are approaches specifically designed to enhance the
performance of Vision Transformers. One such method proposes adding additional dummy tokens to
the input sequence to improve the classification accuracy of ViTs Darcet et al. [2024]. The authors
observed that tokens with high norms in attention maps often carry significant information for a given
class, but are sometimes concentrated in low-information regions of the image. By introducing extra
register tokens, they aim to redirect the information from these high-norm tokens to the newly added
tokens, thereby improving the models classification performance.

In our work we take inspiration from the vision domain and use the additional register token to
learn the global context of a given task and improve performance of the fine tuned model. Darcet
et al. [2024] shows that Norms of the tokens in the areas of the image where the background of
the image has very low information (That is there are no high frequency color changes/minimum
gradient changes and etc.). Whereas in the model with registers appended before the sequence it is
observed that the number of patches with higher norms in the background area of the image decrease
significantly. From this observation it was concluded that with registers the model focuses more on
the actual subject in the image. The registers help by offloading some internal computation to reduce
interference with local information processing, some of these high-norm tokens remain essential for
capturing global patterns across the image. Similarly in the Language context these additional tokens
can learn the global context of the task that the model is being fine-tuned for and in turn can enhance
the performance of the model.

3 Methodology

3.1 Register-Augmented Fine-Tuning

Our principle approach is to add register tokens to the transformer model during fine-tuning, similar
to the Computer Vision approach proposed in Darcet et al. [2024]. We define a register-augmented
BERT model that uses BERT’s underlying architecture but appends empty register tokens to the
input sequence during fine-tuning. Concretely, if our model is fed in the input sequence x =
[x1, . . . ,xN ] ∈ RN×d, then our register-augmented model manually constructs the modified input
sequence x̂ = [r1, . . . , rτ ,x1, . . . ,xN ] ∈ R(N+τ)×d by appending τ empty register tokens at
the front. The model is then fine-tuned on these augmented sequences. Our motive is to allow
the transformer model to use these empty register tokens to extract and store useful global context
information from the actual sequence x to enhance our performance on the task at hand. Schematically,
our model is represented in Figure 1

3.2 Attention Analysis

Along with increased performance, we also wish to analyze if augmenting with registers actually helps
the transformer to make use of global information better. To do so, we resort to performing attention
analysis to see how the interpretability of the transformer changes, by analyzing the contribution of
various tokens to the final model output. We use two methods for attention analysis – (i) layer-wise
relevance propagation and (ii) integrated gradients.

3.2.1 Layer-wise Relevance Propagation

Layer-wise relevance propagation, as proposed by Chefer et al. [2021], is a method to compute
relevancy scores for each token based on how much they contribute to the model output. This method
uses the Deep Taylor Decomposition principle to compute local relevance scores for the output and
propagates these scores backwards through the model to obtain relevance scores at the input end
using an approach similar to backpropagation. More concretely, let us label our layers as L(n)(X,Y)
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Figure 1: Schematic of Register-Augmented LLMs (Adapted from Darcet et al. [2024])

denote the output of the nth layer on two tensors X and Y (usually the input features and the weights).
With this, we use the following generic Deep Taylor Decomposition (as per Montavon et al. [2017])

R
(n)
j = G(X,Y, R(n−1)) =

∑
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where R(n), R(n−1) denote the relevance scores at the nth and (n− 1)th layers respectively. Note that
since we are backpropagating relevance scores, layer 1 is the output layer.

3.2.2 Integrated Gradients

Whereas LRP takes a computational approach to compute relevance scores, Sundararajan et al. [2017]
propose an axiomatic approach to define attribution scores – that is, an axiomatic approach to quantify
how much each input token contributes to the model output. For a function F implemented by a deep
network and input x = (x1, . . . , xn) ∈ Rn, one can axiomatically define an attribution score (relative
to some baseline input x′)) AF (x,x

′) = (a1, . . . , an) ∈ Rn where ai captures the contribution of
xi in the prediction F (x).

An attribution score is constructed with the use of two fundamental and desired axiom – (i) sensitivity
and (ii) implementation invariance. Intuitively, sensitivity says that if the input and baseline differ in
only one feature and have different predictions, then the differing feature should be given a non-zero
attribution score. Implementation invariances says that if two networks implement the same function
(i.e., the two networks are functionally equivalent), then the resulting attribution scores should be the
same.

Sundararajan et al. [2017] propose the integrated gradients scheme, defined as follows:

IntegratedGradsi(x) := (xi − x′
i) ·

∫ 1

α=0

∂F (x′ + α(x− x′))

∂xi
dα.

Integrated Gradients satisfy the two desired axioms, and in fact satisfy a much stronger axiom of
completeness. That is, if F :Rn → R is differentiable almost everywhere, then

n∑
i=1

IntegratedGradsi = F (x)− F (x′).

Further, by picking our baseline such that F (x′) ≈ 0, integrated gradients give an easy feature-wise
decomposition of the model prediction F (x).

3.3 Implementation Details

Two key components form the backbone of this architecture: RegBert and RegBertForQA. The
RegBert class extends the standard BERT model to incorporate register tokens and their correspond-
ing positional embeddings. These tokens are appended to the input sequence embeddings, and the
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attention mask is modified to include them. During the forward pass, the combined embeddings
are processed by the encoder, ensuring that the register tokens participate in the model’s attention
and learning mechanisms. Additionally, the RegBert class supports relevance propagation, enabling
analysis of how information flows through the model layers and identifying the contributions of the
register tokens.

The RegBertForQA class builds on RegBert, specifically adapting it for Question-Answering tasks.
It outputs start and end logits for answer span predictions while excluding register tokens during
inference. The QA-specific adjustments include modifications to the final linear layer and loss
computation to ensure compatibility with the extended sequence length. This class also integrates
relevance propagation techniques, facilitating interpretability by tracing how register tokens influence
the models predictions.

The implementation is tailored for Question-Answering (QA) tasks, where the model processes
preprocessed sequences using a maximum length of 434 tokens and a stride of 128. Training is
conducted with a learning rate of 2×10−5, three epochs, and weight decay of 0.01. During inference,
the outputs are adjusted to exclude the register tokens from predictions, ensuring accuracy in the
original input context. The English corpus from TyDi QA GoldP dataset serves as the basis for both
training and evaluation.

4 Experimental Results

Our experimental evaluation focuses on two key aspects: (1) the quantitative performance improve-
ments achieved through register augmentation, and (2) the qualitative analysis of attention patterns
using both Layer-wise Relevance Propagation (LRP) and Integrated Gradients methods.

4.1 Performance Analysis

We conducted an extensive ablation study to determine the optimal number of register tokens for our
task. Figure 4a presents the results of this analysis using two primary metrics: F1 score and Exact
Match (EM) score. Several key findings emerge from this analysis:

• The addition of register tokens consistently improves model performance up to a certain
point. Both F1 and EM scores show significant improvement when moving from 0 registers
(baseline) to 5–10 registers.

• There exists an optimal range for the number of registers, beyond which performance begins
to degrade. This suggests that while register augmentation is beneficial, there is a sweet
spot that balances the model’s ability to capture global context without overwhelming the
attention mechanism.

• The performance curves for both F1 and EM scores follow similar patterns, indicating that
the benefits of register augmentation are consistent across different evaluation metrics.

4.2 Attention Analysis

To better understand how register tokens influence the model’s behavior, we employed two comple-
mentary analysis techniques: Layer-wise Relevance Propagation (LRP) and Integrated Gradients.
The visualizations in Figures 3b and 4b reveal several interesting patterns:

4.2.1 Layer-wise Relevance Propagation Analysis

The LRP analysis (Figure 3b) demonstrates notable differences between the standard and register-
augmented models:

• Without registers (Figure 4a), the attention patterns appear more diffused, with relevance
scores spread across multiple tokens.

• With registers (Figure 3b), the attention becomes more focused, suggesting that the register
tokens help the model better identify and utilize relevant information in the input sequence.
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4.2.2 Integrated Gradients Analysis

The Integrated Gradients visualization (Figure 4b) provides additional insights into the token attribu-
tion patterns:

• The baseline model (Figure 4a) shows less structured attribution patterns, potentially indi-
cating less efficient information processing.

• The register-augmented model (Figure 4b) exhibits more organized attribution patterns, sug-
gesting that the registers help the model develop a more systematic approach to processing
the input sequence.

These qualitative analyses support our quantitative findings, indicating that register tokens not only
improve performance metrics but also enhance the model’s ability to process and utilize information
more effectively. The visualizations suggest that registers help the model better manage global context
while maintaining focus on relevant local information.

The combined results from both quantitative and qualitative analyses provide strong evidence that
register augmentation is an effective approach for improving transformer-based language models in
the question-answering task. The improvements in both performance metrics and attention patterns
indicate that the benefits of register augmentation extend beyond simple performance gains to
fundamental improvements in how the model processes and utilizes information.

(a) F1 Score v/s Number of Registers Augmented (b) Exact Match v/s Number of Registers Augmented

Figure 2: Ablation study for number of registers with F1 score and exact match as metrics

(a) Layer-wise Relevance Propagation without registers

(b) Layer-wise Relevance Propagation with registers

Figure 3: LRP Visualization with and without registers

5 Future Work & Conclusions

From our experimental results, we draw the conclusion that register-augmentation in the fine-tuning
procedure aids LLMs to better manage global context and improve performance. This is demonstrated
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(a) Integrated Gradients without registers

(b) Integrated Gradients with registers

Figure 4: Integrated Gradients Visualization with and without registers

by a stark increase in F1 score and Exact Match when the number of registers used increases from 0
(regular fine-tuning) to 5 or 10 (register-augmented fine-tuning). Although the performance decreases
on adding too many registers, there is a sweet spot where register augmentation significantly aids
LLM performance.

However, our study is limited to only one Transformer model (BERT) and one NLP task (Question
Answering). As such, we have not tested for the robustness of our method against various architectures
and tasks. With this in mind, we have some future directions to expand our work, and some questions
that we would like to investigate.

1. Register Augmentation in Multilingual Settings. Does register augmentation work for
low-resource languages? Does the number of registers required for significant increase in
performance vary across different languages?

2. Attention Analysis. We would like to investigate how the attention actually distributes
across each register, and ultimately understand if all registers play an equal role in our model
behaviour, rather than some registers having a greater influence than others.

3. Generalizability. Generalize to other NLP tasks besides QA and to other Transformer
models besides BERT. Does the register-augmented model still outperform the regular one?

Author Contributions

The work for this project was equitably divided between all members. Era and Nilay were involved
in coding up and implementing the attention analysis including LRP and Integrated Gradients. Shlok
and Rishikesh were involved in coding up the register-augmented BERT model and performing
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ablation studies. Ishan was involved in debugging and training the models and attention maps, and
preparing the poster. The final report had contributions from all group members, with Ishan writing
the abstract, introduction and methodology, Era and Nilay writing the experimental results section,
Shlok writing the related works section, and Rishikesh writing the implementation details.
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